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Accurate total energies from the adiabatic-connection fluctuation-dissipation theorem
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In the context of inhomogeneous one-dimensional finite systems, recent numerical advances [Phys. Rev. B
103, 125155 (2021)] allow us to compute the exact coupling-constant dependent exchange-correlation kernel
f λ
xc(x, x′, ω) within linear response time-dependent density-functional theory. This permits an improved under-

standing of ground-state total energies derived from the adiabatic-connection fluctuation-dissipation theorem
(ACFDT). We consider both one-shot and self-consistent ACFDT calculations, and demonstrate that chemical
accuracy is reliably preserved when the frequency dependence in the exact functional fxc[n](ω = 0) is neglected.
This performance is understood on the grounds that the exact fxc[n] varies slowly over the most relevant ω range
(but not in general), and hence the spatial structure in fxc[n](ω = 0) is able to largely remedy the principal issue in
the present context: self-interaction (examined from the perspective of the exchange-correlation hole). Moreover,
we find that the implicit orbitals contained within a self-consistent ACFDT calculation utilizing the adiabatic
exact kernel fxc[n](ω = 0) are remarkably similar to the exact Kohn-Sham orbitals, thus further establishing that
the majority of the physics required to capture the ground-state total energy resides in the spatial dependence of
fxc[n] at ω = 0.

DOI: 10.1103/PhysRevB.104.125126

I. INTRODUCTION

The adiabatic-connection fluctuation-dissipation theorem
(ACFDT) [1–6] formalism is a distinctive, powerful ap-
proach to calculating ground-state energies of molecular and
solid-state systems. The underlying theory, which centers
around the density-density linear response function χ across
a range of electron-electron interaction strengths, is exact,
but practical implementations utilize approximations within
time-dependent density functional theory (DFT), resulting in
imperfect ACFDT total energies.

Our strategy in this paper is to use recently devel-
oped techniques [7] for obtaining the exact linear response
time-dependent DFT kernel fxc(x, x′, ω) and ground-state xc
potential vxc(x) to examine in depth the relationship between
approximate kernels/potentials and their corresponding inex-
act ACFDT energies, indicating routes toward more accurate
practical versions of the ACFDT scheme.

The ACFDT total energy method occupies the fifth rung
on Jacob’s ladder of approximate density functionals [8,9]—
above local and semilocal approximations to the xc energy
Exc[n], since ACFDT-based calculations involve a full set of
Kohn-Sham orbitals and energies {|φi〉, εi} to construct the
noninteracting response function χ0 which is, in turn, used
to solve the equations of linear response time-dependent DFT.
Present-day practical implementations scale somewhere be-
tween O(N3) and O(N5) [10–17], depending on the preferred
approximate fxc[n] and whether one performs a so-called one-
shot or self-consistent ACFDT calculation (see Sec. II), where
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N can be taken as the number of constituent particles involved
in the calculation.

The most striking successes of published ACFDT cal-
culations have been in describing long-range correlations,
e.g., van der Waals correlations between two disjoint subsys-
tems within a larger system [4,6,18]. Such correlations evade
capture within Kohn-Sham DFT using local or semilocal
xc approximations [19–21], whereas the ACFDT correlation
functional includes inherent nonlocality even at the low-
est level of approximate fxc[n], the so-called random phase
approximation (RPA) f RPA

xc = 0. For example, ACFDT cal-
culations utilizing the RPA are able to properly describe the
dissociation limit of molecules such as N2 [14]—a notorious
challenge for conventional Kohn-Sham DFT [19,22]. Further-
more, the ACFDT framework, in general, is central to the
development of systematic van der Waals functionals [23,24],
which have been successful not just in determining dissocia-
tion curves, but also in computing van der Waals coefficients,
bond lengths, bond energies, and so on.

On the other hand, ACFDT approximations such as the
RPA-ACFDT are known to be deficient in regard to abso-
lute total energies, owing to weaknesses in their treatment
of short-range correlations [16,25], e.g., in the case of the
homogeneous electron gas (HEG) [26,27]. Indeed, individ-
ual RPA-ACFDT energies are often less accurate than those
calculated using direct application of local/semilocal approx-
imations to the correlation energy. The leading cause of this
is thought to be the effect of spurious self-interaction in the
Hartree kernel [28,29].

A host of ACFDT approximations that venture beyond
the RPA have been considered as possible remedies to this
issue. Two such examples include the self-interaction-free
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exact-exchange kernel fx [6,30–40] and approaches that sep-
arate treatment of long-range and short-range contributions to
the correlation energy, and use the RPA approximation for
the former [41–48]. These improvements contribute toward
alleviating some of the fundamental issues in the present con-
text, e.g., in the calculation of atomization energies, and thus
advance the ongoing effort to further establish the ACFDT
approach as a total energy method, an effort with which this
paper is also concerned.

Although the RPA approximation within the ACFDT
framework is amenable to a term-by-term analysis in the
context of many-body perturbation theory [28,49,50], this
connection is lost when moving beyond the RPA approxi-
mation and, as such, so is a certain degree of transparency.
Since fxc implicitly contains all correlated many-body effects,
including those required to describe excited-state phenomena
such as the optical spectrum, it is imperative to better under-
stand the connection between the various aspects of fxc and
the ACFDT correlation energy. For example, a major consid-
eration is the extent to which the frequency dependence in
fxc is important here [51,52]—the exact fxc includes a drastic
dependence on ω whereby singularities exist along the real ω

axis that are critical for recovering the optical spectrum [7].
In the context of finite one-dimensional systems, we com-

pute the exact f λ
xc(x, x′, ω) to elaborate and elucidate the

connection between its spatial nonlocality/frequency depen-
dence and the ACFDT total energy. In particular, the so-called
adiabatic exact (AE) kernel [53] f λ

xc[n](x, x′, ω = 0), i.e.,
the zero-frequency component of the exact f λ

xc[n] functional,
is explored in relation to both one-shot and self-consistent
ACFDT calculations.

II. THE ADIABATIC-CONNECTION
FLUCTUATION-DISSIPATION THEOREM

A. Background

The origin of the ACFDT in the context of inhomogenous
systems dates back around five decades to the series of articles
given in Refs. [54–56]. Since then, a number of resources
have covered the derivation of the ACFDT [1,4,5,28,57–60],
a brief review is given here. The adiabatic connection estab-
lishes a link between the interacting many-body system and its
corresponding noninteracting Kohn-Sham system, ultimately
leading to an alternate expression for the xc energy. Toward
this end, a one-parameter family of many-body Hamiltonians
is defined,

H (λ) = T̂ + λv̂ee + v̂ext + v̂dxm(λ), (1)

such that the deus ex machina potential [61] v̂dxm(λ) is the
unique [62] potential that ensures the ground-state density at
all values of λ ∈ [0, 1] is equal to the ground-state electron
density at λ = 1, labeled n(x)—this is the adiabatic connec-
tion. Hence, v̂dxm(λ = 1) = 0 and v̂dxm(λ = 0) = v̂H + v̂xc,
where v̂H is the Hartree potential. The λ-interacting ground
state of H (λ) is denoted |�λ〉, allowing the total energy to be
expressed as such,

E = 〈�λ=1|H (1)|�λ=1〉
= 〈�λ=0|H (0)|�λ=0〉
= T0 + EH + Eext + Exc, (2)

where the latter two formulas constitute the conventional
definition of the Kohn-Sham system [63], i.e., T0 is the nonin-
teracting kinetic energy, EH is the Hartree energy, Eext is the
external energy, and Exc is the xc energy. Moreover, |�λ=0〉
represents the Kohn-Sham Slater determinant ground state.

Rearrangement of the above expressions yields an alternate
form for the Hxc energy EHxc = EH + Exc,

EHxc = 〈�λ=1|H (1)|�λ=1〉 − 〈�λ=0|H (0)|�λ=0〉
−〈�λ=1|v̂dxm(1)|�λ=1〉 + 〈�λ=0|v̂dxm(0)|�λ=0〉,

which becomes, upon use of the fundamental theorem of
calculus and the Hellmann-Feynmann theorem,

EHxc =
∫ 1

0

d

dλ
(〈�λ|H (λ)|�λ〉 − 〈�λ|v̂dxm(λ)|�λ〉) dλ

=
∫ 1

0
〈�λ|v̂ee|�λ〉 dλ. (3)

The expression in Eq. (3) contrasts with the conventional
one, Eq. (2), as it does not involve the kinetic operator at
the seemingly steep price of having to know the xc potential
energy [5],

Uxc(λ) = 〈�λ|λv̂ee|�λ〉 − λEH, (4)

at each value of λ along the adiabatic connection [64].
However, knowledge of the challenging expectation value

in Eq. (3) is tantamount to knowledge of the static (equal-
time) two-point correlator 〈�λ|n̂(x)n̂(x′)|�λ〉, which de-
scribes quantum statistical fluctuations in the density inherent
to the state |�λ〉 [65]. The fluctuation-dissipation theorem
[66] provides a relationship between the response of a sys-
tem to these spontaneous internal changes (fluctuations) in
its density, and the response of that same system to external
perturbations in its density. The latter is described with the
density-density linear response function,

χλ[n](x, x′, ω) = δn

δvext

∣∣∣∣
n0

, (5)

i.e., the first-order change in the density due to a perturbation
in the external potential within a system of λ-interacting par-
ticles described by H (λ) in Eq. (1). In the present context, the
fluctuation-dissipation theorem takes the form [67]

〈�λ|n̂(x)n̂(x′)|�λ〉 = n(x)n(x′) − 2

π

∫ ∞

0
χλ(x, x′, iω) dω,

thus connecting the ground-state xc energy with linear re-
sponse theory.

The above derivation outlines an in principle exact refor-
mulation of conventional Kohn-Sham DFT [5], meaning the
total energy functional

EACFD[n] := T0[n] + Eext[n] + EH[n] + EACFD
xc [n] (6)

has the correct minimum, i.e., the exact ground-state energy,
and this minimum is attained at the interacting ground-state
density. Having performed the rearrangements given from
the fluctuation-dissipation theorem, the ACFDT xc energy
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functional EACFD
xc [n] = EACFD

x [n] + EACFD
c [n] becomes

EACFD
x [n] =Ex[{|φi[n]〉}], (7)

EACFD
c [n] = − 1

2π

∫ 1

0
dλ

∫ ∞

0
dω

∫∫
dxdx′vee(x, x′)

× [χλ[n](x, x′, iω) − χ0[n](x, x′, iω)], (8)

where Ex[{|φi〉}] is the exact-exchange functional evaluated
at the Kohn-Sham orbitals {|φi〉}, and χ0[n] = δn/δvKS is
the associated response function of the Kohn-Sham system.
These are the central expressions around which the remainder
of this paper is based, namely, we evaluate the total energy
functional Eq. (6) with its exact definition, and then introduce
approximations into the functional through f λ

xc[n] (i.e., χλ[n]).
Linear response time-dependent DFT establishes a unique

map [68,69] from a tractable noninteracting (Kohn-Sham) re-
sponse function χ0[n] to an otherwise intractable λ-interacting
response function χλ[n] through the xc kernel,

f λ
xc[n](x, x′, ω) = δvλ

xc

δn

∣∣∣∣
n0

, (9)

i.e., the first-order change in the λ-dependent xc potential due
to a perturbation in the density oscillating in time with fre-
quency ω. This map constitutes the Dyson equation of linear
response time-dependent DFT,

χλ[n] = χ0[n] + χ0[n] ∗ (λ fH + f λ
xc[n]) ∗ χ [n], (10)

where A ∗ B = ∫
A(x, x′)B(x′, x′′)dx′, and fH = δvH/δn is the

Hartree kernel (the electron-electron interaction).
The xc kernel f λ

xc[n] is the central subject of approximation
in linear response time-dependent DFT [1], and therefore the
principal ingredients in an ACFDT total energy calculation are
an approximation to the xc kernel functional f λ

xc[n] together
with a prescription for determining the density n at which
to evaluate the ACFDT total energy functional EACFD[n]. In
regard to the latter concern, there are two main approaches
that are applied in practice to determine this density. The first
is the most common, and is often referred to as a one-shot
ACFDT calculation, wherein the density n is obtained from a
self-consistent solution of the ground-state Kohn-Sham equa-
tions with an approximate xc potential vxc[n] (see Ref. [2]
for a recent review). The second, often referred to as a self-
consistent ACFDT calculation [16,36,40,70–73], solves

E0 = min
n

EACFD[n], (11)

where the equations that yield a stationary (presumed to be
minimizing) density are known [16,32,70,74]. In the instance
that both vxc[n] and f λ

xc[n] are exact, the output of a one-shot
and self-consistent ACFDT calculation coincide, however,
this is not true when approximations are involved, as we shall
explore in Sec. III.

In practice, an approximate xc kernel functional f λ
xc[n]

that is also parameterized with respect to λ is not required,
as it is possible to exploit a curious relationship between
ground-state wave functions along the adiabatic connection
and ground-state wave functions with scaled spatial coordi-
nates, see Refs. [5,52]. This relationship permits us to specify
a conventional functional fxc[n] := f λ=1

xc [n] and obtain its λ

dependence with little-to-no additional expense. Such an ob-
servation is central to practical ACFDT calculations, although
we are unable to exploit it here due to using the softened
Coulomb interaction.

B. Implementation

This work involves finite systems in one dimension inter-
acting with a softened Coulomb electron-electron interaction

vee(x, x′) = 1

|x − x′| + α
, (12)

where α is the softening parameter; α = 1 a.u. is used in this
paper. A real-space grid of dimension N discretizes the spatial
domain [−L, L] subject to Dirichlet boundary conditions. We
consider four prototype systems, each of which include two
like-spin electrons [75] in the external potentials described
below.

The central complication when implementing the exact
ACFDT total energy functional is evaluation of the ACFDT
correlation functional Eq. (8), which we now proceed to elab-
orate, see also Fig. 1.

Having chosen some external potential vext(x), the exact
interacting density n(x) is obtained through solution of the
time-independent Schrödinger equation. The corresponding
unique Kohn-Sham potential vKS(x) is then reverse engi-
neered by applying preconditioned root-finding techniques
to an appropriate fixed-point map [76]. The Kohn-Sham
orbitals and energies {|φi〉, εi} are used to construct the non-
interacting response function χ0 along iω in the Lehmann
representation [1].

To calculate the final ingredient χλ[n], we first obtain
the λ-dependent wave functions {|�λ

i 〉} along the adiabatic
connection, as defined in Sec. II A—this grossly impractical
step is performed for investigative reasons and constitutes the
primary computational expense. For each value of the cou-
pling constant on some discrete grid, the potential vdxm(λ, x)
is obtained by yet again using root-finding techniques to target
the λ = 1 interacting density, n(x) (see Supplemental Material
for an example vdxm(λ, x) [77]). The full set of λ-dependent
wave functions and energies {|�λ

i 〉, Eλ
i } is then used to cal-

culate the λ-interacting response functions in the Lehmann
representation,

χλ(x, x′, iω) =
∞∑

n=1

−2
�λ

n

ω2 + (�λ
n )2

× 〈
�λ

0

∣∣n̂(x)
∣∣�λ

n

〉〈
�λ

n

∣∣n̂(x′)
∣∣�λ

0

〉
, (13)

where �λ
n = Eλ

n − Eλ
0 is the nth excitation energy of the λ-

interacting Hamiltonian along the adiabatic connection.
At this stage, it is possible to construct the exact λ-

dependent xc kernel using the expression

f λ
xc(ω) = χ−1

0 (iω) − (χλ)−1(iω) − λ fH, (14)

which comes from inspection of the Dyson equation Eq. (10)
(note that superscript −1 signifies the matrix inverse in a
finite spatial basis). Construction of f λ

xc in this fashion is an
intricate matter that has been dealt with in prior work [7].
For our purposes, it suffices to observe that in all the cases
presented below, the exact λ-dependent response function is
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FIG. 1. A flow chart depicting the course of action taken to eval-
uate the exact ACFDT total energy EACFD[n] at the exact interacting
ground-state density n. This procedure is modified to investigate
approximate ACFDT approaches as follows: (∗) a noninteracting
Kohn-Sham calculation is performed with some approximate vxc[n],
and then the algorithm proceeds with the corresponding approximate
noninteracting response function, (†) rather than calculate and utilize
the exact f λ

xc[n], an approximate functional f λ
xc[n] is chosen and used

alongside χ0[n] to solve the Dyson equation Eq. (10), ultimately
yielding an approximate many-body response function χλ[n].

reconstructed to within machine precision when the exact f λ
xc

and exact χ0 are used to solve the Dyson equation. This step
is critical, as ultimately we shall isolate certain features of the
exact f λ

xc to examine their impact on the correlation energy,
for example, utilizing only the ω = 0 component of f λ

xc here
defines the AE approximation.

The final step toward obtaining EACFD
c involves evaluat-

ing the coupling constant and frequency integrals in Eq. (8).
For the systems presented in Sec. III, the λ-dependent inte-
grand does not deviate much from a linear form, and thus

Gauss-Legendre integration is able to reach machine precision
with Nλ = 10 grid points. However, the ω-dependent inte-
grand is not suited to the traditional Gauss-Legendre scheme,
and so it is convention to utilize a change of coordinates to
reduce the number of frequency grid points required to reach a
desired accuracy [78]. Upon careful comparison with a variety
of methods from literature [60], we find the substitution

ω = a tan

(
aω̃2

2

)
(15)

performs best, where a is a numerical parameter and ω̃

is the coordinate. (The traditional Gauss-Legendre scheme
is then applied to the transformed ω̃-dependent integral).
This approach is able to reach more than sufficient accuracies
with Nω = 30 grid points—a comprehensive motivation and
derivation can be found in the Supplemental Material.

The algorithm that has just been outlined captures the
exact correlation energy to within O(10−10) a.u. across the
systems studied in this paper. This procedure can be suitably
adapted, see Fig. 1, to include an approximate fxc[n] and/or
an approximate vxc[n], where we recall the latter is used to
determine the density at which EACFD[n] is evaluated in a
one-shot calculation (rather than evaluating EACFD[n] at the
exact interacting density as is done in the first and second
panels of Fig. 1).

On the other hand, a self-consistent ACFDT total energy
calculation comprises first specifying an initial guess Kohn-
Sham potential vKS(x) in place of the first and second panels
in Fig. 1. Note that since there is a one-to-one correspon-
dence between the density and the Kohn-Sham potential,
it is sufficient to minimize over variations in vKS to min-
imize the ACFDT total energy functional as in Eq. (11).
We are then able to iterate the initial guess toward the
minimizing Kohn-Sham potential by utilizing the broyden
fletcher goldfarb shanno (BFGS) optimization algorithm—
this involves looping over the flow chart in Fig. 1. In the
event that the ACFDT total energy functional is specified with
the exact fxc[n], the minimization procedure terminates at the
exact Kohn-Sham potential vKS(x)/the exact interacting den-
sity n(x) without their explicit inclusion. In general, iterations
are terminated when the Jacobian norm is O(10−6), meaning
the BFGS algorithm is making energy variations O(10−8) a.u.
The calculations are parallelized over λ grid points using dask
[79].

Minimizing the ACFDT total energy functional is able to
circumvent the troublesome starting-point dependence inher-
ent to a one-shot calculation. In practice, the minimization is
accomplished by solving a set of optimized effective potential
equations to generate the minimizing density [16,36,40,70–
73], rather than direct minimization of the functional as is
considered in this paper. Despite the latter being much more
expensive, we are required to take these measures, as the AE
kernel fxc[n](ω = 0) has no analytic representation in terms
of the density/orbitals. In either case, self-consistent calcu-
lations are more computationally demanding than one-shot
calculations. However, the accuracy of self-consistent ACFDT
total energies is entirely determined by the approximate
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fxc[n], which in certain circumstances can be advantageous,
as we shall examine in Sec. III.

III. RESULTS

Let us begin by first examining one-shot and self-consistent
ACFDT total energies to explore the significance of the
spatial/frequency dependence in fxc(x, x′, iω) and the influ-
ence of the density n at which EACFD[n] is evaluated. An
atomic system is used to illustrate the results concerning
short-ranged correlations, whereas a double well system is
used in the subsequent section on long-ranged correlations.
A system with a flat slablike density profile assists in de-
termining various sources of error in Sec. III C. Finally, all
four systems, including the infinite potential well, enable us
to ensure sufficient generality in the conclusions drawn.

This paper focuses on three approximations to the xc
kernel: The RPA f RPA

xc [n] = 0, an adiabatic local density ap-
proximation (LDA) f ALDA

xc [n](x, x′, ω = 0) ∝ δ(x − x′), and
the AE xc kernel fxc[n](x, x′, ω = 0). Since this work utilizes
the softened Coulomb interaction, we are prohibited from
using the scaling relationship to obtain f λ

xc[n] from fxc[n], and
therefore our LDA energy functional from which f ALDA,λ

xc [n]
is constructed is parameterized at each value of λ with ref-
erence to both the HEG and one-dimensional slab systems
[80] (see Supplemental Material for details regarding this
parametrization).

A. Short-range correlations

We shall now consider two like-spin electrons confined
in an atomlike potential vext = −1/(|0.05x| + 1) within the
domain [−15, 15] a.u. which is discretized over Nx = 121
grid points—see upper panel of Fig. 2. The so-called exact
adiabatic connection curve [5,81] is given in the lower panel
of Fig. 2 which provides a geometric interpretation of the
λ-dependent ACFDT integrand,

EACFD
xc [n] = Ex[{|φi〉}] +

∫ 1

0

Uxc(λ)

λ
dλ, (16)

i.e., the λ-dependent xc potential energy, see Eqs. (3) and (4).
The slight convex bend in the adiabatic connection curve that
is observed here implies a modest static correlation [5]. In this
instance, the correlation energy is 1.3% of the xc energy, and
the xc energy is 24% of the total energy, Etot = −1.510 a.u.

The relative error in the atomic total energy is illustrated in
Fig. 3 across the whole range of approximate ground-state xc
potentials and xc kernels considered herein.

With the exception of the energies calculated utilizing the
notoriously poor Hartree orbitals, the predominant clustering
in error appears to be according to the approximate fxc[n],
rather than the approximate vxc[n] used to generate the input
density. This suggests that there is a fairly general insensitivity
to the density at which EACFD[n] is evaluated after having been
specified with some fxc[n]. Arguments have been made that
this must be the case in the context of the RPA [6], and we are
now able to demonstrate that it is also the case when using the
adiabatic LDA and the AE approximations. This conclusion
translates to all other systems studied here as can be seen
in the Supplemental Material, wherein similar figures can be

FIG. 2. Upper: The ground-state density, external potential, and
reverse-engineered Kohn-Sham potential for the atomic system.
The external and Kohn-Sham potentials have been shifted for
illustrative purposes. Lower: The exact adiabatic connection curve,
i.e., the λ-dependent integrand of the ACFDT formula Eq. (16),
where the exchange energy (area of shaded region A) and correlation
energy (area of shaded region B) are given geometric context. The
white region that compliments the shaded regions has area equal to
minus the kinetic correlation energy, Tc

found for each of the three remaining systems: An infinite
potential well, a slab, and a double well.

Second, the AE kernel, i.e., ignoring the frequency depen-
dence in the otherwise exact functional fxc[n](x, x′, ω = 0),
reduces the error in the total energy by orders of magnitude
when compared to the RPA and adiabatic LDA kernels. For
example, the absolute error in the AE-ACFDT total energy
is 0.0006 a.u. when ground-state LDA density/orbitals are
used in a one-shot calculation—significantly better than the
usual measure of chemical accuracy, 0.0016 a.u. (1 kcal/mol).
Moreover, we find that this level of accuracy is reliably
achieved across differing ground-state orbitals (with the ex-
ception of the Hartree orbitals) and differing systems.

There is a sense in which this performance can be said
to be inherent to the AE approximation fxc[n](x, x′, ω = 0),
namely, in using the exact Kohn-Sham potential vKS(x) to
generate the one-shot ground-state orbitals, we are able to
isolate error coming solely from the fact that the approximate
xc kernel is not exact. Furthermore, minimizing the ACFDT
total energy functional serves a similar purpose, i.e., error is
entirely due to the approximate fxc[n]. It can be observed in
Fig. 3 and in its corresponding tabulated data (see Supplemen-
tal Material) that these two methods produce relative errors
in the total energy to within O(10−6) of each other. In other
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FIG. 3. Absolute error in the atomic total energy across a variety
of approximate ACFDT total energies. Each of the first four groups
of colored bars is labeled with the approximate fxc[n] used to specify
EACFD[n], while the fifth group (no ACFDT) denotes a conventional
ground-state Kohn-Sham calculation for comparison. The first four
bars of each group indicate the approximate vxc[n] used to generate
the density (and orbitals) at which EACFD[n] is evaluated, while the
fifth bar (cyan) indicates that the input density was determined self-
consistently (i.e., it minimizes the applicable ACFDT total energy
functional). The lower bar chart enlarges the outlined region in the
upper bar chart. (†) At this position, there are two bars of zero height,
i.e., the exact interacting ground-state density coincides with the
density that minimizes the energy functional, both of which return
the exact ground-state energy.

words, the implicit (minimizing) potential/orbitals that are
contained within the self-consistent AE-ACFDT calculation
are close to the exact Kohn-Sham potential/orbitals, both
of which yield ACFDT total energies well below chemical
accuracy.

This similarity between the self-consistent AE-ACFDT or-
bitals and the exact Kohn-Sham orbitals is manifest when
comparing the associated minimizing density with the exact
interacting density, Fig. 4. These observations point toward a
central conclusion of this paper: the spatial structure in the
exact xc kernel at ω = 0, see Fig. 5, is sufficient to almost en-
tirely determine the exact total/correlation energy and, in turn,
the exact interacting density and exact Kohn-Sham potential.
Hence, the intricate difference between the nonlocal spatial
structure in Fig. 5 versus the local spatial structure in, for
example, an adiabatic LDA kernel gives rise to a significant
difference in the respective total energies, the reasons for
which we shall now explore.

FIG. 4. Upper panel: The density n that minimizes the atomic
ACFDT energy functional EACFD[n] specified with some approxi-
mate fxc[n]. The minimizing density when the exact fxc[n] is used
is the interacting ground-state density (black solid). Lower panel:
Zooming in such that the subtle difference between the minimizing
densities that comes from ignoring the frequency dependence in the
exact fxc[n] can be seen.

FIG. 5. The AE f λ
xc(x, x′, ω = 0) for the atomic system at λ =

0.98, i.e., at a discrete value of λ that is sampled along the adiabatic
connection.

125126-6



ACCURATE TOTAL ENERGIES FROM THE … PHYSICAL REVIEW B 104, 125126 (2021)

Turning now toward the RPA and adiabatic LDA kernels,
inspection of Figs. 3 and 4 leads one to conjecture that these
approximate kernels share the same fundamental issues, with
the adiabatic LDA suffering slightly less. Both approxima-
tions are in serious error when it comes to the correlation
energy: an order of magnitude too negative in the case of the
atom, and more so in the case of the infinite potential well
and double well. Therefore, minimizing the corresponding
ACFDT total energy functionals necessarily makes matters
worse—the RPA and adiabatic LDA minimizing densities
deviate significantly from the interacting ground-state density,
and even deviate from most approximations to it, Fig. 4.

The source of this error is understood here in the con-
text of the so-called λ-averaged xc hole. In conventional
wave-function-based theories, the statistical hole nhole(x, x′)
describes how the probability distribution of particle positions
n(x) changes upon measurement of a particle at x′ [82]. In
density-based theories, however, the xc hole is redefined and
is the object with which the density undergoes Coulomb inter-
action to produce the xc energy [5,19,20,54,83],

Exc =
∫∫

n(x)nhole
xc (x, x′)

|x − x′| dxdx′, (17)

=
∫∫∫

n(x)nhole,λ(x, x′)
|x − x′| dλdxdx′, (18)

where nhole,λ is the traditional statistical hole of the λ-
interacting systems along the adiabatic connection. Compar-
ing Eq. (18) with the ACFDT xc energy expression provides
a unique definition of the xc hole in the present context and,
moreover, it defines an approximate xc hole in terms of fxc[n]
[54]. Nevertheless, the two definitions are closely related,
and it is instructive to view the λ-averaged xc hole in both
contexts, not least because certain important sum rules are
shared, e.g.,

∫
nhole

xc (x, x′) dx = −1.
As discussed above, to isolate deficiencies in the approx-

imate fxc[n], we shall hereafter consider xc holes that utilize
the exact Kohn-Sham orbitals and density in the correspond-
ing one-shot ACFDT calculations [84]. The upper panel in
Fig. 6 demonstrates that the so-called on-top xc hole is far too
deep in the case of the RPA and the adiabatic LDA. This can
be interpreted as the second particle having negative probabil-
ity to be measured at the position of the first—an artifact due
to the original particle interacting with itself at x′ = 2.5 a.u.
This self-interaction at the level of the xc kernel plagues both
the RPA and adiabatic LDA similarly, which can be seen more
clearly in the correlation hole [5] (lower panel of Fig. 6).
In fact, the RPA and adiabatic LDA correlation holes reach
a minimum at x = 2.5 a.u. where they should be identically
zero, that is to say, exchange is entirely responsible for the fact
that two fermions cannot be measured at the same position.
Minimizing the ACFDT energy functional defined with f ALDA

xc
or f RPA

xc = 0 accentuates the self-interaction thereby making
the on-top correlation hole even deeper.

Note that the traditional on-top LDA xc hole, that is, the
on-top hole defined with the exact LDA pair-correlation func-
tion [54], is known to be accurate and therefore central to the
success of conventional ground-state LDA calculations [19].
However, the ALDA-ACFDT approximate xc hole, which uti-
lizes an adiabatic xc kernel derived from an LDA functional,

FIG. 6. Upper panel: The atomic xc hole at x′ = 2.5 a.u. derived
using the approximate xc kernels considered in this paper. (Note that
in all cases the exchange hole is exact because the exact ground-state
Kohn-Sham orbitals were used to evaluate the ACFDT functional).
The density at x′ = 2.5 a.u. (purple) and the xc hole should satisfy
the following relation: nhole

xc (x = 2.5, x′ = 2.5) = −n(x = 2.5), i.e.,
there is zero chance the second particle is at the same position as the
first. Lower panel: The correlation hole at x′ = 2.5 a.u., where it can
be seen that the adiabatic LDA and RPA on-top correlation holes are
much too deep, giving rise to the excessively negative energies seen
in Fig. 3.

is distinct from the traditional LDA xc hole, leading to errors
of the kind discussed in the previous paragraph.

A simple quantitative measure of self-interaction is given
using one-particle calculations, wherein any correlation
present is necessarily due to self-interaction. For the atomic
system, the one-particle adiabatic LDA correlation energy
is −0.016 a.u., whereas the corresponding adiabatic LDA
two-particle correlation energy is −0.05 a.u. Doubling the
spurious one-particle energy reveals that the majority of the
two-particle correlation energy constitutes self-interaction.
The AE approximation has no spurious one-particle corre-
lation energy because the exact one-particle fxc[n] is itself
adiabatic. While this line of reasoning suggests that the AE
approximation is self-interaction free, this is not quite the
case: the exact exchange kernel fx[n](x, x′, ω) provides a
more rigorous definition of a self-interaction-free kernel, and
this includes an ω dependence [31,35]. Nonetheless, it can be
seen in Fig. 6 that the nonlocal spatial structure in the exact
fxc[n] at ω = 0 is able to largely remedy the deficiencies due
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FIG. 7. The ground-state density, external potential, and reverse-
engineered Kohn-Sham potential for the double well system. The
external and Kohn-Sham potentials have been shifted for illustrative
purposes.

to self-interaction—Sec. III C provides more insight on this
matter.

B. Long-range correlations

We now examine a system containing long-range correla-
tions, i.e., van der Waals correlations [67]: A double well, see
Fig. 7. This system is also known to exhibit a steplike feature
in the Kohn-Sham potential [85–87] to localize one electron
in each well—without such a step, the noninteracting particles
would spuriously collapse into the same well, as is the case in
Hartree theory.

The wells are separated at distance R = 14 a.u., meaning
the correlation energy is low O(10−6) a.u., and as such the
RPA and adiabatic LDA suffer even more as a result of self-
interaction: the relative error in Ec is now O(105). However,
one might expect such error is alleviated to a degree when
computing quantities that involve energy differences, e.g.,
dissociation curves. In the context of dissociation curves, it is
imperative that the total energy method in question provides
at least some account of long-range correlations, and it is this
phenomenon toward which we now focus our attention.

The correlation hole for the double well is given in Fig. 8.
As expected, upon measuring an electron in the right-hand
well at x′ = 8 a.u., there is a strong erroneous contribution
to RPA and adiabatic LDA correlation holes in the same
well where the electron was measured due to the electron
Coulomb interacting with itself–the correlation hole should
largely reside in the opposite well. Inclusion of the nonlocal
spatial structure in the exact xc kernel at ω = 0 is able to
almost entirely correct this issue, as discussed in the previous
section.

On the other hand, it can also be observed in the lower
panel of Fig. 8 that the correlation hole in the opposing well,
a necessarily long-range feature, is modeled successfully in
all three of the approximations considered. This observa-
tion represents the systematic nonlocality introduced via the
Dyson equation and constitutes the principal advantage of

FIG. 8. The double well correlation hole nhole
c (x, x′ = 8) derived

using the approximate xc kernels considered in this paper. A particle
is measured in the right-hand well, see Fig. 7, at x′ = 8 a.u., in which
a significant spurious correlation hole emerges due to self-interaction
when using the adiabatic LDA and RPA approximations. The phys-
ical correlation is entirely long range here, and the lower panel
zooms in on the long-range contribution from the upper panel to
demonstrate that all three approximations are indeed able to capture
this long-range correlation hole.

the ACFDT formalism over conventional Kohn-Sham calcu-
lations. We expect that these considerations account for the
fact that, even in the case of the RPA, the limit of large
separation in molecules can be described [14]. We further note
that the AE approximation fxc[n](ω = 0) is able to quanti-
tatively capture the long-range correlation hole, thus further
establishing the notion that the majority of both short-range
and long-range correlations reside in the spatial dependence
of fxc[n](x, x′, ω = 0) when using the ACFDT framework.

Despite self-consistent RPA-ACFDT and adiabatic LDA-
ACFDT calculations accentuating self-interaction error by
making the on-top correlation hole even deeper, we find that
the long-range correlation hole is improved by minimizing the
ACFDT functional. Therefore, even though these approximate
self-consistent ACFDT calculations yield poorer absolute en-
ergies than their one-shot counterparts, it appears that the
long-range properties are improved.

The exact double well fxc computed here contains the
steplike features discussed in Refs. [88–92] that relate
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FIG. 9. The exact numerical xc kernel f λ
xc(x, x′, iω) for the slab

system at λ = 0.98 along the adiabatic connection. The xc kernel
is depicted at different stages along the iω axis, demonstrating that
there is little frequency dependence below ω = 1 a.u., whereupon the
xc kernel then deviates from its adiabatic form.

to the derivative discontinuity (see Supplemental Mate-
rial). In fact, all three approximations to fxc[n] recover
the step in the Kohn-Sham potential when minimizing the
corresponding ACFDT energy functional. This is due to the
fact that the exact-exchange optimized effective potential
contains the step, and the ACFDT total energy functionals
comprise in large part the Hartree-Fock functional.

C. Sources of error explained

The central aim of this section is to carefully examine
the reasons behind the exceptional performance of the AE
approximation fxc[n](ω = 0) as demonstrated in the previous
sections. The slab system, see Supplemental Material, is used
to illustrate the forthcoming conclusions. First, it is possible
to observe that the exact fxc[n](x, x′, iω) along iω undergoes
considerable change away from its adiabatic ω = 0 limit, see
Fig. 9. (Note, however, that this change is much more regular
than along the real ω axis due to circumventing the singulari-
ties described in Ref. [7]). Therefore, the performance of the
AE approximation cannot be attributed to xc kernels generally
possessing modest frequency dependence along iω.

Since we have access to the exact λ-interacting adi-
abatic connection wave functions/energies {|�λ

i 〉, Eλ
i } and

the exact Kohn-Sham single-particle wave functions/energies
{|�i〉, εi}, the ω-dependent integral in EACFD

c [n] can be evalu-
ated analytically up to some arbitrary ωmax, see Supplemental
Material. It is thus possible to isolate errors whose exclusive
source is a finite ωmax, as depicted in Fig. 10—another per-
spective on this is that the exact fxc[n] is used for ω � ωmax,
and fxc[n] = −λ fH, i.e., χ = χ0, is used for ω > ωmax.

The absolute error in the correlation energy is defined,


Ec(ωmax) = ∣∣EACFD
c (∞) − EACFD

c (ωmax)
∣∣, (19)

FIG. 10. The exact ω-dependent integrand g(ω) of the ACFDT
correlation energy expression is depicted for the slab system. Ana-
lytic integration allows us to terminate the integration at some finite
ωmax to determine the amount of correlation energy contained in the
curve at frequencies ω � ωmax.

where EACFD
c (ωmax) is the ACFDT correlation energy whose

analytic ω integration has been terminated at ωmax [EACFD
c (∞)

is therefore the exact correlation energy]. We find that chemi-
cal accuracy is surpassed prior to ω = 1 a.u., i.e., the capacity
for an approximate fxc[n] to yield accurate correlation en-
ergies predominantly resides in its structure below some
characteristic ωmax (ωmax ≈ 1 in this case)—see Supplemental
Material for a plot. In fact, beyond this ωmax, the AE ap-
proximation fxc[n](ω = 0) produces approximate interacting
response functions upon solution of the Dyson equation that
are as poor as the RPA, adiabatic LDA, or simply setting
χλ = χ0.

In all systems studied here, while the exact fxc[n] is not
adiabatic in general, it is adiabatic over the most relevant
ω range, and therefore the AE approximation performs ac-
cordingly. Such an observation is commensurate with prior
findings [7]: In the context of the optical spectrum, fxc[n](ω)
is required at the ω corresponding to a transition energy, and
thus at frequencies beyond the lowest lying excitations, the
AE approximation ceases to perform.

In light of these observations, it is imperative that practical
approximate integration schemes target the relevant ω region,
whereas the long-range tail of the ω-dependent integrand is
less important. While the integration scheme proposed in this
paper, Eq. (15), compresses the domain [0,∞] to [0,

√
π/a],

thus allowing us to capture the tail, its central advantage
instead comes from an explicit treatment of the terms respon-
sible for the low-ω structure in g(ω), see Fig. 10, namely, the
scheme defines an integral change of coordinates such that
a single term in the Lehmann representation of χ (or χ0)
Eq. (13) is linear, meaning Gauss-Legendre quadrature is ex-
act with just one ω grid point, see Supplemental Material. The
characteristic range ωmax within which most of the correlation
energy resides will depend on a number of factors in practice,
such as the size of the interacting and Kohn-Sham gap, and
number of excitations clustered around this gap [60].
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IV. CONCLUSION

The exact coupling constant-dependent xc kernel
f λ
xc[n](x, x′, iω) for four prototype one-dimensional finite

systems has been calculated [7] and utilized to better
understand the sources of error in practical ACFDT total
energy calculations.

While the frequency-dependence in the exact fxc[n] along
the real ω-axis is critical for recovering the optical spectrum
[7,92,93], this is not the case for ACFDT total energies, where
it is demonstrated that chemical accuracy can be consistently
attained using the AE kernel fxc[n](ω = 0), i.e., neglecting
the frequency dependence in the exact xc kernel, but oth-
erwise retaining its nonlocal spatial structure when solving
the Dyson equation of linear response time-dependent DFT
(this was also the case for the HEG in Refs. [52,94]). The
exact kernel fxc[n] is shown to exhibit little change within
the ω interval that contains the majority of the ground-state
correlation energy. Therefore, it is crucial that approximate
kernels are accurate within this interval, as is the case for the
AE kernel, thereby explaining its success. In light of these
findings, a change of coordinates is proposed for the ACFDT
ω-dependent integral that directly targets the relevant term(s)
in the Lehmann representation of the response function to
reduce the number of Gauss-Legendre grid points required.
An interesting course for future work would involve testing
this integration scheme in practical settings.

The coupling-constant averaged correlation hole is used,
alongside one-particle calculations, to illustrate that strong
self-interaction is present in the RPA and adiabatic LDA
kernels—in both cases, the on-top correlation hole is far too
deep, and the two-particle correlation energy differs little from
twice the spurious one-particle correlation energy. Due to the
observations outlined in the previous paragraph, the spatial
nonlocality in the AE kernel almost entirely remedies the
problem of self-interaction, despite the self-interaction-free
exact-exchange kernel fx possessing a frequency dependence.

In the case of a double-well system, we show that all three
of the approximate kernels considered in this paper—the RPA,
adiabatic LDA, and AE kernels—are able to capture the long-
range correlation hole. This observation further evidences the
central advantage of ACFDT calculations, i.e., in describing
long-range van der Waals correlations. Moreover, we find

that minimizing the ACFDT total energy functional, while
yielding less accurate absolute energies in the case of the
RPA and adiabatic LDA, is able to improve the description
of long-range correlations.

The distinction between one-shot and self-consistent
ACFDT total energies is considered in depth, where we
recall that the latter minimizes the ACFDT total energy func-
tional, whereas the former evaluates the ACFDT total energy
functional at some density n obtained from an approximate
ground-state Kohn-Sham calculation. The ACFDT total en-
ergy functional is found to be somewhat insensitive to the
density at which the functional is evaluated (within reason),
meaning the dominant factor that dictates the effectiveness
of an ACFDT calculation is the approximate fxc[n] with
which EACFD[n] is defined. Where self-interaction is present,
minimizing the ACFDT functional accentuates issues, thus
making the erroneous on-top correlation hole even deeper.
However, in the context of self-consistent AE-ACFDT calcu-
lations, the exact Kohn-Sham potential is faithfully recovered
as the implicit optimized effective potential contained within
the calculation, and therefore so are chemically accurate total
energies.

The scope for obtaining both improved total energies and
improved Kohn-Sham potentials using the ACFDT approach
appears to be significant, and depends critically on capturing
the spatial nonlocality present in the AE kernel. For example,
the energies and potentials that would result from combining
modern adiabatic nonlocal kernels [2,3] with self-consistent
ACFDT calculations [16,17,36,40,70–73] offer an interesting
prospect.

Data created during this research is available through the
Cambridge Apollo research repository [95].
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